

CERTIFICATE OF ACCREDITATION

The ANSI National Accreditation Board

Hereby attests that

RTI Electronics, Inc. dba RTI Group North America, Inc. 33 Jacksonville Road, Bldg. 1 Towaco, NJ 07082

Fulfills the requirements of

ISO/IEC 17025:2017

In the field of

CALIBRATION

This certificate is valid only when accompanied by a current scope of accreditation document. The current scope of accreditation can be verified at www.anab.org.

Jason Stine, Vice President

Expiry Date: 21 November 2026 Certificate Number: L2338

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

RTI Electronics, Inc. dba RTI Group North America, Inc.

33 Jacksonville Road, Bldg.1
Towaco, NJ 07082

Jennifer Dolan 973-265-0097
Jennifer.dolan@rtigroup.com

CALIBRATION

Valid to: November 21, 2026 Certificate Number: L2338

Ionizing Radiation

Parameter/ Equipment	Range	Reference Beam Quality (IEC 61267 code) or [PTB code] or {University of Wisconsin code}, Target/Filtration - Reference Voltage	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Radiography, Dose Calibration Factor (Gy/C)	(35 to 150) kV	(RQR 5) W/2.83 mm Al – 70 kV (RQA 5) W/23.8 mm Al – 70 kV	1.6 % of reading	Comparison to Radcal RC6M Ion
		(RQR 9) W/3.75 mm Al – 120 kV	1.6 % of reading	Chamber
Mammography, Dose Calibration Factor (Gy/C)	(18 to 49) kV	[MMV 28] Mo/0.03 mm Mo – 28 kV [MRV 30] Mo/0.025 mm Rh – 30 kV [WRV 30] W/0.05 mm Rh – 30 kV [WSV 30] W/0.05 mm Ag – 30 kV [WAV 30] W/0.5 mm Al – 30 kV [WAH 30] W/2.5 mm Al – 30 kV	1.6 % of reading	Comparison to Radcal RC6M Ion Chamber
CT Dose, Dose Calibration Factor (Gy/C)	(35 to 150) kV	{UW 150 M} W/2.7 mm Al + 0.25 mm Cu - 150 kV {UW 120 M} W/6.7 mm Al - 120 kV {UW 100 M} W/4.7 mm Al - 100 kV {UW 80 M} W/2.7 mm Al - 80 kV	2.4 % of reading	Comparison to Standard Imaging A101 Ion Chamber
CT-Dose Profiler, Dose Calibration Factor (Gy/C)	(35 to 150) kV	(RQR 9) W/3.75 mm Al – 120 kV	1.4 % of reading	Comparison to Radcal RC6 Ion Chamber

Electrical – DC/Low Frequency

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Electrometers, DC Current- Generate	2 pA (25 to 100) pA 100 pA to 10 μA	6.5 % of reading 0.7 % of reading 0.3 % of reading	Comparison to Keithley 2635B SourceMeter
MAS meters, DC Current- Generate	0.5 mA to 10 A	0.5 % of reading	Comparison to Fluke 287 & 189, Electrometer
Electrometers, Charge Generate	2 pC (2 to 100) pC 100 pC to 100 mC	6.5 % of charge 1.5 % of charge 0.19 % of charge	Comparison to Keithley 2635B SourceMeter
Non-Invasive kVp Meters Measure	(18 to 150) kV	0.7 % of reading	Comparison to HV Measurement System (Radiography, Fluoroscopy, Mammography, Dental & CT)

Photometry and Radiometry

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Luminance Responsivity Measure	(10 to 1 000) cd/m ²	3.3 % of reading	Comparison to Reference Detector L100
Illuminance Responsivity Measure	(10 to 100) lux	3.2 % of reading	Comparison to Reference Detector L100

Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the standard uncertainty of the measurement multiplied by a coverage factor of 2 (k=2), corresponding to a confidence level of approximately 95%.

1. This scope is formatted as part of a single document including Certificate of Accreditation No. L2338.

Jason Stine, Vice President

